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Polynomial Approximation in EP(D) with 0 <p < 1
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In this paper, we construct approximants by means of interpolation polynomials
to prove Jackson's theorem and the Bernstein inequality in £P(D) with 0 < p < I.
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1. INTRODUCTION

Let D be a Jordan domain in the complex plane C with rectifiable
boundary r. For 0 < p < 00, we set

where '" is a Riemann mapping of the unit disk U onto D and HP is the
classical Hardy space for U [8].

For IE P(D), we define

(1)

The problem of the degree of polynomial approximation in HP for
1~ p < 00 is not difficult, and Storofenko solved it in the case 0 < p < 1 in
1970s [1,2]. For spaces EP(D) in a Jordan domain, this problem has been
studied by several authors when 1~ P < 00 [3,4]. The Faber operator was
commonly used in these articles. In this paper, we shall study polynomial
approximation in P(D) when 0 < p < 1, and approximants will be
constructed directly by means of Lagrange interpolation polynomials. We
shall use the modulus of continuity of 1 0 '" to estimate the order of the
approximation. However, r is required to be 3 + {) smooth, which means
it has a 3 + {) smooth normal parametric representation.
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In this paper, c; denote positive constants that only depend on p and D.
The assumption that 0 < p < I and that r is 3 + t5 smooth is kept
throughout the paper.

2. SOME PRELIMINARIES

A positive measure p on U is called a Carleson measure if there exists a
constant M such that

p(S(l)) ~ Mill

for any interval I c au, where

{
. III .}S(l) = re ll : I - 271: ~ r < 1, ell E I .

(2)

It is well known that if p is a Carleson measure, then for g E HP we
have [9]

(3 )

where M is the same constant as on the right of (2).
Besides the Riemann mapping t/J : U -. D, with the inverse tP : D -. U, we

also consider the Riemann mapping 'I':C\U-.C\D with 'I'(oo)=oc,
'1"( (0) > 0, and let (/) be the inverse mapping of '1'. Then t/J and 'I' (respec
tively, tP and (/)) can be extended to au (respectively, T) 3 + t5 smoothly.
For z, 'EC\D and u, VEC\U, we have

By (1) we have

C 2 1 ~ 1t/J'(u)1 ~ C2

C;1 ~ 1(/)'(z)1 ~ C2'

(4 )

(5)

(6)

(7)

C;I/
p Ilf 0 t/JII HP ~ Ilfll &(D) ~ c~/p Ilf 0 t/JII w'

We will not identify Ilfll tJ'(D) and lifo t/JII He' and 11·11 will denote either of
these norms.
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A(e io )
h ( iO) iO
"e =e - ~
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(8)

(9)

If n is sufficiently large, D" is a Jordan domain bounded by the curve

Let 'P,,: iC \ u -+ iC \D" be the Riemann mapping with 'P" (oc) = oc,
'P~ (00 ) > 0, and let rp" be the inverse mapping of 'P".

LEMMA I. For z, 'E iC \D"

-I Irp,,(z) - rp,,(Oj
c 3 ~ y ~ C3

z-~

c3 1
~ 111>~(z)1 ~ c3

and/or ZE r

I C4 I [4
1+ r.::--~II1>,,(z)I~I+ r.::+-'

yn n yn n

( 10)

(11 )

(12)

Proof Let z(O)=!/J(e iO
) and z,,(O)=!/J(h,,(e iB

)) be the parametric
representations of r and aD", respectively. It is not too difficult to verify

C5
Iz(O)-z,,(O)1 ~~

C51~lz'(O)I, Iz~(O)I~C5

Iz"(O)I, Iz;(O)1 ~ Cs

Iz"(O) - z;(O)1 ~ fi
Iz;(O+t)-z;(O)1 ~C5tJ.
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Note that the third derivatives of l/J and cP appear in the term of z~(O), but
they are both bounded.

From a result due to Warschawski [5, Theorem 5J, we have

It foHows that

(13 )

By Warschawski's other conclusion [6, TheoremS], we have (10), (11),
and

(EC\D n • ( 14 )

For z=l/J(eiO)Er, let us denote by (J the segment from hn(eiO ) to e iO.
Then by (8) we have

cPn(z) = cP n 0 l/J(hn(eill)) + (cP n 0 l/J )'(hn(eill)) A~)

+f [(cPnol/J)'(u)-(cPnol/J)'(hn(eil/))J duo
"

Since the length of (J equals I).(eil/)ljfi, and by (14) we have

cPn(z) = cPn 0 l/J(hn(e iO )) + eio(cPnol/J)'(hn(eiO)) + 0 (!).
fil(cPol/J)'(elll)1 n

By (13)

Since cPn 0 l/J(hn(e ill
)) is on the unit circle, we assume

taking the derivative with respect to t, we have

. il = (m. a ,I')'(h ( iO)) dhn(eil/) dO
Ie 'Pn 'I' n e dO dt .

(15)
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It follows that
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Since d8/dt > 0, then arg(d8/dt) = O. Obviously

dhn (e
ifl

) (. ifl 1 A(e
ifl »)

arg dO arg Ie + fi--;m-

=~+o+o(~)

and by (13)

arg(ct> 0 l/J)'(hn(e ifl ») = arg(ct>n 0 l/J),(e ifl
) + 0 (~).

Together with (16), we have

It follows that

By (15),

0fl 0 1 0 (1)ct>n ° l/J(e' )=el/+ fiert+o ~ .

This follows (12) and completes the proof of Lemma 1. I
Set

1 2c4r=l+---
n fi n

and set

1 2c4
Pn=l+ ;:+-.

yn n

For n sufficiently large such that rn > 1, we denote

Yn= {'Pn(rneifl
) : - n ::::; 0 < n }

(17)

(18 )
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From Lemma 1, we have

Then for (E 1'", we have

inf
ZE r'E ,'n v Tn

VI C6
Iz-~ ~-.

n
(19 )

(20)

Let G" be the domain enclosed by}'" and let K" be the domain bounded
by}'" and T,,; that means

K" = {z: r" < IcP,,(z)1 < p,,}.

For n sufficiently large, it is obvious

DllcG"cDcG"uKII •

LEMMA 2. For FE £P(D), l1'e have

J IF(z)lldzl ~ cgn 1
/
p-- I 11F11 p •

"II
Proof It is known [I]

max Ig(u)1 ~(I-r) lip Ilgll p
lui ~ r

holds for g E HP, 0 < r < 1. By (20)

max IF(z)1 ~ C7n1ip IIFll p.
IE }'Il

(21 )

Since tP(Y,,) is the image of the circle lui =r" under the smooth mapping
tP 0 'JI", the arc measure on it is a Carleson measure. By (3)

f IFot/J(uW jdul ~c9I1FII~.
,p(Y.)

Hence

f IF(z)lldzl ~max IF(z)11-P f IFot/J(uW 1t/J(u)lldul
j'n =E 'II .p(yl'l)

~cgnl!P-lllFllp. I
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3. CONSTRUCTION OF ApPROXIMANTS
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Let Iln be the set of polynomials of degree at most n. For f E £P(D), we
define

Set

Uk~j= (1 + 2~) exp (/;1 }

They are the roots of

j= 0,1, ... , k.

(
l)k + I

Uk + I - 1 + 2 fi = O.

Let

then ztjE Gn c D.
For f E P(D), we denote by Ln.df, z) the kth Lagrange interpolation

polynomial to f at the points {zt~, j = 0, 1, ... , k }. That means
Ln,df, z) E Ilk and .

j= 1, 2, ..., k.

Let
k

W ( ~) - IT (~ ~(nl)n,k .... - .. -""k,j'

j~ I

Then

L (f, ~)=_1f wn.k(O-wn.dz) f(O d V

n. k , ~ 2' (r) v ~.
7tl j'. w n•k ~ ~ - z

Choosing 1= 1+ [2Ip], we define {A ~} by the identity

(
1- x n + 1)1 _ In k

1 - L: An,k X .
-x k=O

Of course, A n•k are all positive integers. Taking x ---+ 1, we can see

In

L A n.k = (n + 1)/.
k~O

(22)

(23)
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(24)

Obviously V" (f, Z) E flu + 1 )n"

For g E HP, the modulus of continuity in HP is defined by

w( g, t)p = sup II g(ue is
) - g(u)11 HP'

0<.5<1

Now we state our results.

THEOREM 1. Suppose 0 < p < I and r is 3 + <5 smooth. Then for
fE F(D),

and it follows that

Ilf(z) - VJf, z)ll p ~ clOw (f 0 I/J,~) p (25)

(26 )

From Theorem I, we can obtain the so-called "de la Vallee Poussin
theorem" in EP(D).

COROLLARY 1. Under the conditions of Theorem 1,

Ilf(z) - V,,(f, z)11 P ~ CI2 E ,,(f)p.

The reason is V"(P,,,z)=P,,(z) for P"(z)Efl,, and

Ilf(z) - V"U; z)ll p ~ 2c lO IIfll p .

It is known that (25) is sharp in the case D= U [1]. However, we will
give the Bernstein inequality in F(D), which means that (25) is even sharp
in the general cases.

THEOREM 2. Under the conditions of Theorem t,

holds for any P" E fl".

As in [2], Theorem 2 implies the inverse theorem of approximation in
£P(D).
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COROLLARY 2. Under the conditions of Theorem 1,
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For the sake of simplicity, we shall use the notations
Ldf, z), wdz), Uk,}' and A k to denote Ln,k (f, z), ui:~, and A n,b respec
tively. Before proving the theorems, we need to prove the asymptotic
behaviour of wdz).

4. THE ASYMPTOTIC BEHAVIOUR

LEMMA 3. Let n ~ k ~ (l + I In. Then for z E C\Dn ,

Proof As in [7], for u, v E C \Dn , we construct

v#U

v= u.

Let log Xn (u, v) denote the branch of logarithm for which
logXn(u, (0)=0. By (10) we have

Ilog Xn(u, v)1 ~ CJ6

and we have the Laurrent series

L:
,cn all,m (u)

log Xn(u, v) = .
vm

m= J

Evidently

lan,m(U)I=!_I.f vm-1IOgXn(U,V)dvj
2m 1"1 = I

(27)
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For z = 'i',,(u), we have
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1
wdz)

og
d~ + I [Uk + I _ (1 + (1/2 fi ))k + I ]

k

= L log Xn(u, Uk.)
i~O

,x k

= L an.m(u) L (u k . i ) m
m=l j=O

=(k+l) f an,lk+1)N(U)(I- 1;:)
N~ I 2 v n

and by (27) we have

(k+ liN

~ C' e - ../';;/4
"" 15 •

This completes the proof of Lemma 3. I
Set

LEMMA 4. Let n ,;;;; k,;;;; (/ + 1In. Then for (, z E Kn

\

tPn(Z)lk+1
tPn(O ,;;;; CI?

IHd" z)I ,;;;; C I 7 e - ,,/';;/4

and for Z E r, (E K", J{'e also have

/
OHd(,Z)! --,,/';;/5

GZ ,;;;; CI7 e

Proof For (, Z E Kn , we have

(28)

(29)

ItP,,(z)j ,;;;; Pn'
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It follows that

From Lemma 3

I~~ ~z/ - [cPn(Z)]k + 1/ ~ CIS e - vr;;/4 IcPn(Z)/ k+ , + ( 1+ 2 fir + L

~ C l 9 e~~"i7./4 IcPn(z)lk+ '.

Then we also have

For n sufficiently large, we have

Then
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Hence

I
wdz) - [cPn(Z)Jk + II
Wk(O cPn(O

~ Iwdz) _ d~ + L[cPn (z)Y + 'I
--:: wdO wn(O

I
dk +'

+ IcPn(Z)\k+' W:(O - [et>n(OJ

(k + 1)

Then we have (28).
Since H n ((, z) is analytic with respect to z in Kn , we have

aHd', z) _1_. f Hk (" r} dr.
az 2m Tnv;'n (r - z)
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By (19) and (28), for ZErwe have

I
aHk«(, Z)I ,:::::. 2~v;;;/4

:1 '" (20 n e .
(Z

This implies (29). I

5. PROOF OF THE THEOREMS

Proof of Theorem 1. For Z E r, located in the exterior of')! n' we have

_I.f f( () d( = O.
2m j'n ( - Z

By (22)

It follows that

Evidently

I (/+lln I wk(z)f«()-f(z)
f(z)-Vn(f,z)=( +1)' I Akn -2 ·J -(V) (_7 d(

n k~n lrl Yn W ki, ~

1 (I+\)n 1 f(O-f(z)
=( +1)' L A k - n -2 ·f H.«(,z) (_7 d(

n k ~ n nl l'n ..

I (1+ lIn _I f [cPn(Z)Jk+ 1 f(() - f(z) d
+(n+l)' k~n Akn2ni l'n cPn(O (-z (

= I dz ) + 12 (z). (31 )

By (28)

III (z)1 ~ (n ~ I )' (lk~:.n A k n 2
1
n t IH.«(, Z)ll f «(; =;(Z)!ldCl

~c17e v
i

7./4 Llf«(~=;(Z)lldCl

,::::: C20 f If(O - f(z)1 IdYl
"'(n+I)' l. l(-zl/+1 \" ZEr.

(32)
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By (23), note x=(/>,,(Z)/(/>,,(O

1/2 (z)1 = 1 I~f (I-X,,+I)'X,,+I/(O-/(Z)d(/
(n + 1)' 2m i'n 1 - x ( - z

1 f (1+IXI"~')'IXI"+'I/«(:-/(Z)lldC!
~ 2n(n + 1)' i'n 11 - xl ~ - z

~ C21 f 1/(0 - /(z)1 IdC!.
(n+l)' ,n 1(-zl'+1

By (10) we have

and from Lemma 3 we have

1/2(z)l ~ Cn f 1/(O-/(z)lld(l.
(n + 1)' j'n I( - zl

Thus

I/(z)- V,,(f, z)l ~ III (z)1 + 1/2 (z)1

s:. C20 + C22 f 1/(0 - /(z)lld~1
"'" (n+ I)' Yn I(-zl'+1 ~, ZEr.

By (20), for z E rand (E}'", we have

( -I)"~ 1- 1- c~

Therefore by (34) we have
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(33)

(34)

I/(z) - V,,(f, z)1 ~ n
C
;41t I[~(~(~~=;~;~)]" \'+ I 1/(0 - /(z)1 Id(l·

Let

F (o={[~(O]"-[~(Z)]"}'+1 [/(0-[(7)]
z ~(O-~(z) , - .
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From Lemma 2

Then
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II/(z)- V,,(j; z)ll~

~ nl/:'~~P 1 t Idzl t I[~(~~r~=;~;~ )]", 1/+ t)p 1/(0 - /(z W Id(l

As in [2], this follows (32) and completes the proof Theorem 1. I
Pro()fo/ Theorem 2. Since V"(P,,,z)=P,,(z) for P"EIl". By (30) we

have

I (/+ I)" I wdz) P,,(O y

P,,(z)=-( +1)' L A k -"-2·f -(7) 7_~d(,
n k~" nl )'nWk ~ ~ '"

I 1/+1)" I p(r)
- - "A - f H (Y z) -"-"" dY
- (+ I)' L. k -,,, 2' k 1" 7 _ ~ I,

n k ~" nl )'n ~ '"

I (I - x" + I)' "P"(0- x -y-d(,
2ni(n+I),t I-x I,-Z

where x = cP"(z)/cP,, (0,

I I/~)" ,,,-I-.f oHdCz)Py"(O dr
P~(z)= - (n+ I)' /::" A k 2m 1n oz (,-z ~

I 1/+1)" If P,,(O

-(n+l)' k~" A k "2n:i )'n
HdCz

) «(_Z)2
d

(

I a (I-X"+ I)' "P,,(O- f - x --d(
2ni(n + I)' ;On CZ I - x ( - z

1 f (I-X"+l)1 P (7)
- X" " ~ d(

2ni(n + I)' )'n I - X «( - Z)2

=J 1 (Z) + J 2 (Z) + J 3 (Z ) + J4 (Z).

For z E T, from Lemma 4 we have
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Similar to estimating 1/2(z)1 in the proof of Theorem I

Evidently
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I If [ /( I - x" + 1 ) xJIJ3 (z)I=2n(n+I)/;. -n-l+(n+I)(/+I)x"+'- I'-x-

( I - x" + 1)1 I r/J' ( ) P (") I
" "z ." I" d~x x ---- ~

(1 _X)I - ffl. (") ". 'P" I" I" - z

,:::: C28 f [( I J IP,,(OI Id~1
""(n+I)1 Y. n+l)+I(_zl l(-zl/+1 ~

,:::: C29 f IP,,(OI Id~1
""(n+I)/-1 ;.• I(-zll+1 ~.

Then we have

I 4

IP~(z)1 ~ (n + 1)1 j~1 /Jj(z)1

,:::: ('30 f IP,,(OI /d~1
""( +1)/-1 1~_71/+1 1", ZErn )'. I" ..

Comparing with (34) in the proof of Theorem 1, we can obtain (26) with
a similar procedure. I
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