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In this paper, we construct approximants by means of interpolation polynomials
to prove Jackson's theorem and the Bernstein inequality in £?(D) with 0< p< 1.
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1. INTRODUCTION

Let D be a Jordan domain in the complex plane C with rectifiable
boundary 7. For 0 < p < o0, we set

Er(D)={f:(")"f-deH},

where ¢ is a Riemann mapping of the unit disk U onto D and H” is the
classical Hardy space for U [8].
For fe EF(D), we define

(F4l (D)= “(l///)”pf"l//“m- (1)

The problem of the degree of polynomial approximation in H” for
1 < p < oo is not difficult, and StoroZenko solved it in the case 0< p<1 in
1970s {1, 2]. For spaces E?(D) in a Jordan domain, this probiem has been
studied by several authors when 1 < p < oo [3,4]. The Faber operator was
commonly used in these articles. In this paper, we shall study polynomial
approximation in E”(D) when O0<p<1, and approximants will be
constructed directly by means of Lagrange interpolation polynomials. We
shall use the modulus of continuity of foy to estimate the order of the
approximation. However, I is required to be 3 + § smooth, which means
it has a 3 + 6 smooth normal parametric representation.
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In this paper, ¢; denote positive constants that only depend on p and D.
The assumption that O<p<1 and that I is 3+6 smooth is kept
throughout the paper.

2. SOME PRELIMINARIES

A positive measure u on U is called a Carleson measure if there exists a
constant M such that

p(SU)) s M|l (2)
for any interval /< oU, where

. 1 ,
S(1)={re”: 1——|——|<r< l,e"el}.
2n

It is well known that if p is a Carleson measure, then for ge H? we
have [9]

ip
{Lvlgl"d#} <A4B80) (M2 +1) |l gll s (3)

where M is the same constant as on the right of (2).

Besides the Riemann mapping ¢ : U — D, with the inverse ¢ : D — U, we
also consider the Riemann mapping ¥:C\U - C\D with ¥Y(oxc)=0c,
¥'(o0)>0, and let @ be the inverse mapping of ¥. Then y and ¥ (respec-
tively, ¢ and &) can be extended to oU (respectively, I'}) 3+ J smoothly.
For z, { e C\D and u, ve C\U, we have

o< Y(u) — Y (v) <c, (4)
u—v

¢; "< <, (6)

e, ' <|D'(2) €. )

By (1) we have

e NS A e <N N oy S 3 1f oWl -

We will not identify ||/l g, and [l /oIl ;. and [/-|| will denote either of
these norms.
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Let
D,={y(rh,(e?):0<r<1, —n<B<m},
where
0
hn(e”)==e”-ii;;) (8)
and
i0
A(e) = 9
TR ©)

If n is sufficiently large, D, is a Jordan domain bounded by the curve
{W(h,(e): —n<B<n}.

Let ¥,:C\U—->C\D, be the Riemann mapping with ¥, ()= o0,
¥, (o0)>0, and let @, be the inverse mapping of ¥,,.

Lemma 1. For z,{e C\D,

b (z)—-D
C;‘S‘ a(2) v"(C)ISQ (10)
;' <P (2) <6y (11)
and for ze '
l (’4 l 64
l+—=—-=<?,(2)I <l +—=+—. (12)
Jnon Jnon

Proof. Let z(8)=w(e®) and z,(0)=y¢(k,(e?)) be the parametric
representations of I” and 8D, respectively. It is not too difficult to verify

Cs
|z(0) — z,(8) < —=
o
cs'<izZ(0)1, |z, (0) < cs

12°(0)],  1z,(0) < cs

Cs

n

220+ 1) — 2,(0)| < est’.

12(8) — z,(6)] <
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Note that the third derivatives of Y and @ appear in the term of z,/(8), but

they are both bounded.
From a result due to Warschawski [5, Theorem 5], we have

1@, (Y (h, () — &' (Y ()]

K|]"
= (=2

It follows that
D, ) (h,(e”)— (Do) (™) < \c/’; (13)

By Warschawski’s other conclusion [6, Theorem 5], we have (10), (11),
and

P, <cs,  {eCA\D,. (14)

For z=y(e")e I, let us denote by ¢ the segment from A, (e?) to e®.
Then by (8) we have

i0
D,(z)=@,oy(h,(e”))+ (P, ¢) (h,(e")) i/';)
+ [ (@, o) @) — (0,4 (hy ()] d
Since the length of ¢ equals lﬂ.(e"”)l/\/r;, and by (14) we have
e (P, o) (h,(e i))+0<,1,)'

\/_|(¢ l// i

2)=@,0y(h, () +

By (13)

i ° 1 ,i0
(oY) (e") +0<£). as)

D,(2)=B,y(h,(e”)) + —
Snl@oyyie
Since @, -(h,(¢?)) is on the unit circle, we assume

e'=@,oy(h,(e”));

taking the derivative with respect to ¢, we have

dh (e"’) d9

ie = (P,o¢) (h, (")) —— s
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It follows that

noo , o dh, (e) do
2+’—arg(¢n y)(h,(e ))+afg~d6 a

Since df/dr >0, then arg(df/dt})=0. Obviously

e ) 1 A 0
rg dhy (e )=arg (ie’0+—~——(e ))

do \/; do
+0+0<—\/l—;)

S E ]

and by (13)
arg( o) (h, () = arg(®, < § (") + O (ﬁ)
Together with (16), we have

t=0+arg(@-y)(e”)+ 0 <—L>

Jn

It follows that

eUDay) (), ()
@-pren TS

By (15),

P 1
B, Y(e?) ="+ —=e"+ 0 (-)
n

N

This follows (12) and completes the proof of Lemma 1. |

Set
2
r,,=1+-l——ﬂ
Jn o
and set
1 2
pn=1 FRLEL)

\/,; n

For » sufficiently large such that r,> 1, we denote

Vu={¥.(r,e): —n<b<n}

+arg —.

24]

(16)

(17)

(18)



242 LEFAN ZHONG

and
r,={?,p,e®): —n<b<n}.

From Lemma 1, we have

S < inf jz-g < (19)
zel n
femuly,
Then for {ey,, we have
c ¢!
1-T<ip) <1 -2 (20)

Let G, be the domain enclosed by 7, and let K, be the domain bounded
by y, and I,,; that means

K,={z:r,<|®,(z) <p,}.
For n sufficiently large, it is obvious
D, cG,cD=G,UK,.

LEMMA 2. For Fe EF(D), we have

[ 1R 1dzl < eonte -ty FL, (21)
Proof. It is known [1]

max | g(u)l <(1—r) 7| gll,

ful =r

holds for ge H?, 0 <r< 1. By (20)

max |F(z)| <c;n'® | F|,.

ZTEYn

Since ¢(v,) is the image of the circle |u| =r, under the smooth mapping
¢o ¥, the arc measure on it is a Carleson measure. By (3)

L( IF Y] Idul <5 11
Hence

| 1P 14z <max () |
Vn Z€%n

(7

)IFolﬂ(u)!” | (u)| |dul

<egn” Y F|,. 1
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3. CONSTRUCTION OF APPROXIMANTS

Let 17, be the set of polynomials of degree at most n. For f e EP(D), we
define

En(f)p= inf “f_Pan

Pyell,

Set
2nj

1 . .
u17}=<1+5-ﬁ>exp(k+lz>, j=0,1,...,k.

They are the roots of

. 1 k+1
u“—<1+ ) =0.
2\/;

=, W)

Let

then z{" e G, < D.

For fe E?(D), we denote by L, (f, z) the kth Lagrange interpolation
polynomial to f at the points {z{"),j=0,1,..,k}. That means
L,,(f.z)ell, and

L (fizf)y=zm,  j=1,2,..k

Let
k
wn.k(:)= H (2—:;("', .
j=1
Then
Ao roul)-o,,E) () .
Lath=gg] =0 22

Choosing /= 1+ [2/p], we define {4*} by the identity
1 _ xn+1 i/ In
—_ = A, x, 23
( 1 —x ) kgo nk X ( )
Of course, A, , are all positive integers. Taking x — 1, we can see
in

Z An.kz(n+ 1)[
k

=0
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Set

1 (I+ 1)

(n+1) k‘é" Api wLloifs2) (24)

Valf z)=

Obviously V,(f, z) eIl 1.
For ge H?, the modulus of continuity in H” is defined by

wl(g t),= sup | glue™)— gu)ll -

O<s<t

Now we state our results.

THEOREM 1. Suppose O<p<1 and I is 3+6 smooth. Then for
feEN(D),

1
1/(2) =V, (fi M, <crow (fotﬁ, ;) (25)
and it follows that

1
ENp<cno(fvs). (26)

P

From Theorem 1, we can obtain the so-called “de la Vallee Poussin
theorem”™ in E”(D).

COROLLARY 1. Under the conditions of Theorem 1,
||f(z) - Vn(,f’ Z)”p < C12En(f)p'
The reason is ¥,(P,,z)=P,(z) for P, (z)e I, and

1/Gz) =V, (£, 2, <2e0 /11,

It is known that (25) is sharp in the case D= U [1]. However, we will
give the Bernstein inequality in E”(D), which means that (25) is even sharp
in the general cases.

THEOREM 2. Under the conditions of Theorem 1,
1P, <cisn 1P,

holds for any P,eIl,.

As in [2], Theorem 2 implies the inverse theorem of approximation in
E?(D).
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COROLLARY 2. Under the conditions of Theorem 1,

1 e f ¢ o » lie
o(ruy) <2{L g0

i=1
For the sake of simplicity, we shall use the notations
Li(f, 2), wi(2), 4y ;» and A, to denote L, ,(f,z),uy"), and A,,, respec-

tively. Before proving the theorems, we need to prove the asymptotic
behaviour of w, (z).

4. THE ASYMPTOTIC BEHAVIOUR
LeMMA 3. Let n<k<(/+1)n Then for ze C\D,,

w,(2)

A [D,(2)] = (L + (12 /m) T

where d, = ¥, ().

_inid
1| <cse Y™,

Proof. Asin [7], for u,ve C\D,,, we construct

lIln(u) - Wn(v)
dn(u - U)

an o
4’ = Uu.

n

Xnltt, W)=

Let logy,(u,v) denote the branch of logarithm for which
log x,,(u, ©)=0. By (10) we have

[log 1., (u, V)] < c6

and we have the Laurrent series

o0

log y,(u,v)=%

m=]

a"."l (u)
™

Evidently

|, ()] =

1 _
Ez?f,v,z,” 10g ¥, (u, v) dv

<y 27y
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For z =¥, (u), we have

W, (2)
dk+l[uk+l__(1 +(1/2\/'—1))k+1]

Z log %, (u, uy ;)

HM?‘ '

k
/1 m Z (uk.j)im

j=0
1 k4 )N
=k ¥ a,,.u.w(u)(l—zﬁ)
and by (27) we have
@, (2)
d:+l{[¢n(z)]k+l

—(1+(1/2\/Z))“'}'
I8 1 —nN
Scptk+1) Y (1—2ﬁ>

N=1
. ~ i
S5 VU

This completes the proof of Lemma 3. |
Set

Z ¢n z k+1
Hk(C,-')zwk( )—Iitb*ig)] .
LemMMA 4. Let n<hk<({+ 1)n. Then for {,ze K
?,(() ] "
IHk(ﬂ:, :)J S Ci7 e*v"h,m

and for ze T, (e K,, we also have

k+1

K¢y

oH,({, 2z
oz

(29)
Proof. For {,ze K,, we have

<@, 0L 1P,z
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It follows that

?,(z)
?,(S)

k+1 p (/+ 1

n

Sy L 0y7.
rn

From Lemma 3

L) 10,7

<ewe M, ()4 + (1 +

1 k+1
2ﬁ)

e YD, (z)) K.

Then we also have

w, ()

- vk
P Scpge Y@ ()
n

—[@,. ()1

For n sufficiently large, we have

w,({)
|¢n(C)!"“<2‘gr:T :
Then
K+ i _
w"(C)_[d’n(C)]""“’ 2c9e YD ()] K
Hence

W (2) [4’"(2)]"“

() [P0
ez dpt '[P, (2)] !
o) w,({)
dk+l
¢' k+1 n _ (D - (k+ 1)
+1®,(z)| o0 [@,(0)]
<cl-,e‘v/_"/“.

Then we have (28).
Since H,({, z) is analytic with respect to z in K,, we have

GH,((C,Z)=_L[ Hl((c’T)
az 27[1 Tnyn (T—Z)z

dr.
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By (19) and (28), for ze I we have

)5Hk(C, z)

/ni4
iz

. 2 ~ N
K e~

This implies (29). |

5. PROOF OF THE THEOREMS

Proof of Theorem 1. For ze [, located in the exterior of y,, we have

1 Q)
2ni )'HC_Z
By (22)
e 1 w0 SO
L= —5g ] annt-: ®
It follows that
AN B i 1 a2) ),
V.(fz)= PERTY k};n 2m k(c)g_zdg. (30)
Evidently
L e () SO S@)
eVl =50y E,,Ak”‘zm' o) Tz ¢
e - f
—(n+1)l Pl _I‘ Hk(c -) C
RGN 1 [@. “‘f(o f
oy Z Tmf[ "(4)] el
=1,(2)+ L,(z). (31)
By (28)
| U 1 S =f(2)
LN <oy kz,, Ak,nz—ﬁ er(z,-)ll—-Z_—z-— Eq
Cap LfE) =S . .
<Gl e e, zer. (32)
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By (23), note x=®,(:)/®,({)

I152(2)1 = (n-:l) 2:uf<1°1:—Lx:>[ mf(i')—f()
—— |._x|;I+I')' ot [LOL211) 1
By (10) we have
=zl <es 11—x
and from Lemma 3 we have
o< [ Q=160 o)

(n+ 1), |-z
Thus

/) =V, (fi 2 <, (@) + [12(2)]

<"20+sz | f(C)—f(z)
e VT

|dCi, zel. (34)

By (20), for ze I" and {ey,, we have
I[(0)]" — [(2)1"] = 1¢(2)|" — [$({))"

—1\n
;1—(1—C7 )
n

Therefore by (34) we have

I+1

O LI o) o) 1a.

() —o(2)

@ -vaa< 2|

Let

F,(g):{“"“]"‘ [4()1"

f+1
)~ 9(2) } L) f(2)].
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From Lemma 2

|f(z) =V, (/. 2) < —,q—,——HF [l -

Then
YAV
c -[¢( 17|t
<t el | =) Q)= f)17 1]
m! 1110 0+ 1)p

|fod(e™) — fod(e?)]? dr.

i(?

< (lflzfp J dOJ

As in [2], this follows (32) and completes the proof Theorem 1. |

Proof of Theorem2. Since V,(P,,z)=P,(z) for P,ell,. By (30) we
have

ey I o(2)P,(0)

P"Z = - —n5_.
=Gy &, e T
1 U+ 1)n l P (C)
S S— A, — | H (L z)=2>
(n+ 1) ,z:n k""2nijl-,n (6 )C—z :

l 1__xn+l { "P”(C)
_27ti(n+1)’£-"( 1—x )x C—zdc’

where x=&,(z)/P,({),

1 “E)" 1 J aHk(C’z)Pn(i:)

Pi(z)= ——— — .
n(2) (n+ 1) = "ol 6z {—:z .
1 (+ 1) l P (C)
Y Ay | H (L2
T L, Mg MG

B 1 j_ f_ l—.\'"+l 4 P (g)
2ni(n+ 1) h@z( 1—x > {—z d

! =X P
‘2m(n+1)’f~,vn< [—x )x %

=J1(2)+ S, (2) + J5(2) + T4(2).

For ze I, from Lemma 4 we have

()] + 12 (2)] < —22 Le (,C,)l, |dC.

(n+ 1) M-
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Similar to estimating |/,(z)| in the proof of Theorem 1

P,
Va2 | 2l
e P, ()l
SHrn J ;‘;|‘Z|l+1 |dC].
Evidently
= ! vt [(1_xn+l)x
IJB(ZN—m J‘“[—n—1+(n+l)(l+l)x ‘—T]
(I—xn+1)1 lt"(p;‘(Z)P"(C)d"
I—x " @,0i-:"
B ! PO .
<GPl [ R
€2 (S
\(n+])"1j‘"|c_:|,+]|dg|.
Then we have
. 1
!Pn(-)l\( e I; 1J(2)]
: PO .
\(nnt(;o)’*'j,, |g_:rf+1 L), zel

Comparing with (34) in the proof of Theorem 1, we can obtain (26) with
a similar procedure. |
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