Polynomial Approximation in $E^{\rho}(D)$ with $0<p<1$

Lefan Zhong*
Department of Mathematics, Peking University, Beijing, People's Republic of China

Communicated by V. Totik
Received Septermber 26, 1989; accepted in revised form March 11, 1992

Abstract

In this paper, we construct approximants by means of interpolation polynomials to prove Jackson's theorem and the Bernstein inequality in $E^{p}(D)$ with $0<p<1$. © 1993 Academic Press. Inc.

1. Introduction

Let D be a Jordan domain in the complex plane \mathbb{C} with rectifiable boundary Γ. For $0<p<\infty$, we set

$$
E^{p}(D)=\left\{f:\left(\psi^{\prime}\right)^{1 / p} f \circ \psi \in H^{p}\right\}
$$

where ψ is a Riemann mapping of the unit disk U onto D and H^{p} is the classical Hardy space for U [8].

For $f \in E^{p}(D)$, we define

$$
\begin{equation*}
\|f\|_{E^{p}(D)}=\left\|\left(\psi^{\prime}\right)^{1 / p} f \circ \psi\right\|_{H^{p}} \tag{1}
\end{equation*}
$$

The problem of the degree of polynomial approximation in H^{p} for $1 \leqslant p<\infty$ is not difficult, and Storoženko solved it in the case $0<p<1$ in 1970s [1, 2]. For spaces $E^{p}(D)$ in a Jordan domain, this problem has been studied by several authors when $1 \leqslant p<\infty[3,4]$. The Faber operator was commonly used in these articles. In this paper, we shall study polynomial approximation in $E^{p}(D)$ when $0<p<1$, and approximants will be constructed directly by means of Lagrange interpolation polynomials. We shall use the modulus of continuity of $f \circ \psi$ to estimate the order of the approximation. However, Γ is required to be $3+\delta$ smooth, which means it has a $3+\delta$ smooth normal parametric representation.

[^0]In this paper, c_{j} denote positive constants that only depend on p and D. The assumption that $0<p<1$ and that Γ is $3+\delta$ smooth is kept throughout the paper.

2. Some Preliminaries

A positive measure μ on U is called a Carleson measure if there exists a constant M such that

$$
\begin{equation*}
\mu(S(I)) \leqslant M|I| \tag{2}
\end{equation*}
$$

for any interval $I \subset \partial U$, where

$$
S(I)=\left\{r e^{i r}: 1-\frac{|I|}{2 \pi} \leqslant r<1, e^{i t} \in I\right\} .
$$

It is well known that if μ is a Carleson measure, then for $g \in H^{p}$ we have [9]

$$
\begin{equation*}
\left\{\int_{U}|g|^{p} d \mu\right\}^{1 / p} \leqslant 4(80)^{4}\left(M^{2}+1\right)\|g\|_{H^{p}} \tag{3}
\end{equation*}
$$

where M is the same constant as on the right of (2).
Besides the Riemann mapping $\psi: U \rightarrow D$, with the inverse $\phi: D \rightarrow U$, we also consider the Riemann mapping $\Psi: \mathbb{C} \backslash U \rightarrow \mathbb{C} \backslash D$ with $\Psi(\infty)=\infty$, $\Psi^{\prime}(\infty)>0$, and let Φ be the inverse mapping of Ψ. Then ψ and Ψ (respectively, ϕ and Φ) can be extended to ∂U (respectively, Γ) $3+\delta$ smoothly. For $z, \zeta \in \mathbb{C} \backslash D$ and $u, v \in \mathbb{C} \backslash U$, we have

$$
\begin{align*}
& c_{2}^{-1} \leqslant\left|\frac{\psi(u)-\psi(v)}{u-v}\right| \leqslant c_{2} \tag{4}\\
& c_{2}^{-1} \leqslant\left|\frac{\Phi(z)-\Phi(\zeta)}{z-\zeta}\right| \leqslant c_{2} \tag{5}\\
& c_{2}^{1} \leqslant\left|\psi^{\prime}(u)\right| \leqslant c_{2} \tag{6}\\
& c_{2}^{-1} \leqslant\left|\Phi^{\prime}(z)\right| \leqslant c_{2} \tag{7}
\end{align*}
$$

By (1) we have

$$
c_{2}^{-1 / p}\|f \circ \psi\|_{H^{p}} \leqslant\|f\|_{E p(D)} \leqslant c_{2}^{1 / p}\|f \circ \psi\|_{H^{p}}
$$

We will not identify $\|f\|_{E^{p}(D)}$ and $\|f \circ \psi\|_{A^{p}}$, and $\|\cdot\|$ will denote either of these norms.

Let

$$
D_{n}=\left\{\psi\left(r h_{n}\left(e^{i \theta}\right)\right): 0 \leqslant r<1,-\pi \leqslant \theta<\pi\right\},
$$

where

$$
\begin{equation*}
h_{n}\left(e^{i \theta}\right)=e^{i \theta}-\frac{\lambda\left(e^{i \theta}\right)}{\sqrt{n}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(e^{i \theta}\right)=\frac{e^{i \theta}}{\left|(\Phi \circ \psi)^{\prime}\left(e^{i \theta}\right)\right|} . \tag{9}
\end{equation*}
$$

If n is sufficiently large, D_{n} is a Jordan domain bounded by the curve

$$
\left\{\psi\left(h_{n}\left(e^{i \theta}\right)\right):-\pi \leqslant \theta<\pi\right\} .
$$

Let $\Psi_{n}: \mathbb{C} \backslash U \rightarrow \mathbb{C} \backslash D_{n}$ be the Riemann mapping with $\Psi_{n}(\infty)=\infty$, $\Psi_{n}^{\prime}(\infty)>0$, and let Φ_{n} be the inverse mapping of Ψ_{n}.

Lemma 1. For $z, \zeta \in \mathbb{C} \backslash D_{n}$

$$
\begin{align*}
& c_{3}^{-1} \leqslant\left|\frac{\Phi_{n}(z)-\Phi_{n}(\zeta)}{z-\zeta}\right| \leqslant c_{3} \tag{10}\\
& c_{3}^{-1} \leqslant\left|\Phi_{n}^{\prime}(z)\right| \leqslant c_{3} \tag{11}
\end{align*}
$$

and for $z \in \Gamma$

$$
\begin{equation*}
1+\frac{1}{\sqrt{n}}-\frac{c_{4}}{n} \leqslant\left|\Phi_{n}(z)\right| \leqslant 1+\frac{1}{\sqrt{n}}+\frac{c_{4}}{n} . \tag{12}
\end{equation*}
$$

Proof. Let $z(\theta)=\psi\left(e^{i \theta}\right)$ and $z_{n}(\theta)=\psi\left(h_{n}\left(e^{i \theta}\right)\right)$ be the parametric representations of Γ and ∂D_{n}, respectively. It is not too difficult to verify

$$
\begin{gathered}
\left|z(\theta)-z_{n}(\theta)\right| \leqslant \frac{c_{5}}{\sqrt{n}} \\
c_{5}^{-1} \leqslant\left|z^{\prime}(\theta)\right|, \quad\left|z_{n}^{\prime}(\theta)\right| \leqslant c_{5} \\
\left|z^{\prime \prime}(\theta)\right|, \quad\left|z_{n}^{\prime \prime}(\theta)\right| \leqslant c_{5} \\
\left|z^{\prime \prime}(\theta)-z_{n}^{\prime \prime}(\theta)\right| \leqslant \frac{c_{5}}{\sqrt{n}} \\
\left|z_{n}^{\prime \prime}(\theta+t)-z_{n}^{\prime \prime}(\theta)\right| \leqslant c_{5} t^{s} .
\end{gathered}
$$

Note that the third derivatives of ψ and Φ appear in the term of $z_{n}^{\prime \prime}(\theta)$, but they are both bounded.

From a result due to Warschawski [5, Theorem 5], we have

$$
\left|\Phi_{n}^{\prime}\left(\psi\left(h_{n}\left(e^{i \theta}\right)\right)\right)-\Phi^{\prime}\left(\psi\left(e^{i \theta}\right)\right)\right| \leqslant \frac{c_{6}}{\sqrt{n}}
$$

It follows that

$$
\begin{equation*}
\left|\left(\Phi_{n} \circ \psi\right)^{\prime}\left(h_{n}\left(e^{i \theta}\right)\right)-(\Phi \circ \psi)^{\prime}\left(e^{i \theta}\right)\right| \leqslant \frac{c_{7}}{\sqrt{n}} . \tag{13}
\end{equation*}
$$

By Warschawski's other conclusion [6, Theorem 5], we have (10), (11), and

$$
\begin{equation*}
\left|\Psi_{n}^{\prime \prime}(\zeta)\right| \leqslant c_{8}, \quad \zeta \in \mathbb{C} \backslash D_{n} \tag{14}
\end{equation*}
$$

For $z=\psi\left(e^{i \theta}\right) \in \Gamma$, let us denote by σ the segment from $h_{n}\left(e^{i \theta}\right)$ to $e^{i \theta}$. Then by (8) we have

$$
\begin{aligned}
\Phi_{n}(z)= & \Phi_{n} \circ \psi\left(h_{n}\left(e^{i \theta}\right)\right)+\left(\Phi_{n} \circ \psi\right)^{\prime}\left(h_{n}\left(e^{i \theta}\right)\right) \frac{\lambda\left(e^{i \theta}\right)}{\sqrt{n}} \\
& +\int_{\sigma}\left[\left(\Phi_{n} \circ \psi\right)^{\prime}(u)-\left(\Phi_{n} \circ \psi\right)^{\prime}\left(h_{n}\left(e^{i \theta}\right)\right)\right] d u .
\end{aligned}
$$

Since the length of σ equals $\left|\lambda\left(e^{i \theta}\right)\right| / \sqrt{n}$, and by (14) we have

$$
\Phi_{n}(z)=\Phi_{n} \circ \psi\left(h_{n}\left(e^{i \theta}\right)\right)+\frac{e^{i \theta}\left(\Phi_{n} \circ \psi\right)^{\prime}\left(h_{n}\left(e^{i \theta}\right)\right)}{\sqrt{n}\left|(\Phi \circ \psi)^{\prime}\left(e^{i \theta}\right)\right|}+O\left(\frac{1}{n}\right) .
$$

By (13)

$$
\begin{equation*}
\Phi_{n}(z)=\Phi_{n} \circ \psi\left(h_{n}\left(e^{i \theta}\right)\right)+\frac{e^{i \theta}(\Phi \circ \psi)^{\prime}\left(e^{i \theta}\right)}{\sqrt{n}\left|(\Phi \circ \psi)^{\prime}\left(e^{i \theta}\right)\right|}+O\left(\frac{1}{n}\right) \tag{15}
\end{equation*}
$$

Since $\Phi_{n} \circ \psi\left(h_{n}\left(e^{i \theta}\right)\right)$ is on the unit circle, we assume

$$
e^{i f}=\Phi_{n} \circ \psi\left(h_{n}\left(e^{i \theta}\right)\right) ;
$$

taking the derivative with respect to t, we have

$$
i e^{i t}=\left(\Phi_{n} \circ \psi\right)^{\prime}\left(h_{n}\left(e^{i \theta}\right)\right) \frac{d h_{n}\left(e^{i \theta}\right)}{d \theta} \frac{d \theta}{d t} .
$$

It follows that

$$
\begin{equation*}
\frac{\pi}{2}+t=\arg \left(\Phi_{n} \circ \psi\right)^{\prime}\left(h_{n}\left(e^{i \theta}\right)\right)+\arg \frac{d h_{n}\left(e^{i \theta}\right)}{d \theta}+\arg \frac{d \theta}{d t} . \tag{16}
\end{equation*}
$$

Since $d \theta / d t>0$, then $\arg (d \theta / d t)=0$. Obviously

$$
\begin{aligned}
\arg \frac{d h_{n}\left(e^{i \theta}\right)}{d \theta} & =\arg \left(i e^{i \theta}+\frac{1}{\sqrt{n}} \frac{\lambda\left(e^{i \theta}\right)}{d \theta}\right) \\
& =\frac{\pi}{2}+\theta+O\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

and by (13)

$$
\arg (\Phi \circ \psi)^{\prime}\left(h_{n}\left(e^{i \theta}\right)\right)=\arg \left(\Phi_{n} \circ \psi\right)^{\prime}\left(e^{i \theta}\right)+O\left(\frac{1}{\sqrt{n}}\right) .
$$

Together with (16), we have

$$
t=\theta+\arg (\Phi \circ \psi)^{\prime}\left(e^{i \theta}\right)+O\left(\frac{1}{\sqrt{n}}\right) .
$$

It follows that

$$
\frac{e^{i \theta}(\Phi \circ \psi)^{\prime}\left(e^{i \theta}\right)}{\left|(\Phi \circ \psi)^{\prime}\left(e^{i \theta}\right)\right|}=e^{i t}+O\left(\frac{1}{\sqrt{n}}\right) .
$$

By (15),

$$
\Phi_{n} \circ \psi\left(e^{i \theta}\right)=e^{i t}+\frac{1}{\sqrt{n}} e^{i t}+O\left(\frac{1}{n}\right)
$$

This follows (12) and completes the proof of Lemma 1.
Set

$$
\begin{equation*}
r_{n}=1+\frac{1}{\sqrt{n}}-\frac{2 c_{4}}{n} \tag{17}
\end{equation*}
$$

and set

$$
\begin{equation*}
\rho_{n}=1+\frac{1}{\sqrt{n}}+\frac{2 c_{4}}{n} . \tag{18}
\end{equation*}
$$

For n sufficiently large such that $r_{n}>1$, we denote

$$
\gamma_{n}=\left\{\Psi_{n}\left(r_{n} e^{i \theta}\right):-\pi \leqslant \theta<\pi\right\}
$$

and

$$
\Gamma_{n}=\left\{\Psi_{n}\left(\rho_{n} e^{i \theta}\right):-\pi \leqslant \theta<\pi\right\} .
$$

From Lemma 1, we have

$$
\begin{equation*}
\frac{c_{6}^{-1}}{n} \leqslant \inf _{\substack{z \in \in \\ \zeta \epsilon \neq \gamma_{n} \cup I_{n}}}|z-\zeta| \leqslant \frac{c_{6}}{n} . \tag{19}
\end{equation*}
$$

Then for $\zeta \in \gamma_{n}$, we have

$$
\begin{equation*}
1-\frac{c_{7}}{n} \leqslant|\phi(\zeta)| \leqslant 1-\frac{c_{7}^{-1}}{n} . \tag{20}
\end{equation*}
$$

Let G_{n} be the domain enclosed by γ_{n} and let K_{n} be the domain bounded by γ_{n} and Γ_{n}; that means

$$
K_{n}=\left\{z: r_{n}<\left|\Phi_{n}(z)\right|<\rho_{n}\right\}
$$

For n sufficiently large, it is obvious

$$
D_{n} \subset G_{n} \subset D \subset G_{n} \cup \bar{K}_{n} .
$$

Lemma 2. For $F \in E^{\rho}(D)$, we have

$$
\begin{equation*}
\int_{\gamma_{n}}|F(z)||d z| \leqslant c_{8} n^{1 / p-1}\|F\|_{p} . \tag{21}
\end{equation*}
$$

Proof. It is known [1]

$$
\max _{|u|=r}|g(u)| \leqslant(1-r)^{1 / p}\|g\|_{p}
$$

holds for $g \in H^{p}, 0<r<1$. By (20)

$$
\max _{z \in \gamma_{n}}|F(z)| \leqslant c_{7} n^{1 / p}\|F\|_{p}
$$

Since $\phi\left(\gamma_{n}\right)$ is the image of the circle $|u|=r_{n}$ under the smooth mapping $\phi \circ \Psi_{n}$, the arc measure on it is a Carleson measure. By (3)

$$
\int_{\phi\left(y_{n}\right)}\left|F_{\circ} \psi(u)\right|^{p}|d u| \leqslant c_{9}\|F\|_{p}^{p} .
$$

Hence

$$
\begin{aligned}
\int_{\gamma_{n}}|F(z)||d z| & \leqslant \max _{z \in \gamma_{n}}|F(z)|^{1-p} \int_{\phi\left(\gamma_{n}\right)}|F \circ \psi(u)|^{p}|\psi(u)||d u| \\
& \leqslant c_{8} n^{1 / p-1}\|F\|_{p} .
\end{aligned}
$$

3. Construction of Approximants

Let Π_{n} be the set of polynomials of degree at most n. For $f \in E^{P}(D)$, we define

$$
E_{n}(f)_{p}=\inf _{P_{n} \in \Pi_{n}}\left\|f-P_{n}\right\|_{p}
$$

Set

$$
u_{k, j}^{(n)}=\left(1+\frac{1}{2 \sqrt{n}}\right) \exp \left(\frac{2 \pi j}{k+1} i\right), \quad j=0,1, \ldots, k
$$

They are the roots of

$$
u^{k+1}-\left(1+\frac{1}{2 \sqrt{n}}\right)^{k+1}=0
$$

Let

$$
z_{k, j}^{(n)}=\Psi_{n}\left(u_{h, j}^{(n)}\right)
$$

then $z_{k, j}^{(n)} \in G_{n} \subset D$.
For $f \in E^{p}(D)$, we denote by $L_{n, k}(f, z)$ the k th Lagrange interpolation polynomial to f at the points $\left\{z_{k, j}^{(n)}, j=0,1, \ldots, k\right\}$. That means $L_{n, k}(f, z) \in \Pi_{k}$ and

$$
L_{n, k}\left(f, z_{k, j}^{(n)}\right)=z_{k, j}^{(n)}, \quad j=1,2, \ldots, k
$$

Let

$$
\omega_{n, k}(z)=\prod_{j=1}^{k}\left(z-z_{k, j}^{(n)}\right)
$$

Then

$$
\begin{equation*}
L_{n, k}(f, z)=\frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{\omega_{n, k}(\zeta)-\omega_{n, k}(z)}{\omega_{n, k}(\zeta)} \frac{f(\zeta)}{\zeta-z} d \zeta \tag{22}
\end{equation*}
$$

Choosing $l=1+[2 / p]$, we define $\left\{A_{n}^{k}\right\}$ by the identity

$$
\begin{equation*}
\left(\frac{1-x^{n+1}}{1-x}\right)^{\prime}=\sum_{k=0}^{i n} A_{n, k} x^{k} \tag{23}
\end{equation*}
$$

Of course, $A_{n, k}$ are all positive integers. Taking $x \rightarrow 1$, we can see

$$
\sum_{k=0}^{l n} A_{n, k}=(n+1)^{\prime}
$$

Set

$$
\begin{equation*}
V_{n}(f, z)=\frac{1}{(n+1)} \sum_{k=n}^{(l+1) m} A_{n, k-n} L_{n, k}(f, z) \tag{24}
\end{equation*}
$$

Obviously $V_{n}(f, z) \in \Pi_{(f+1) n}$.
For $g \in H^{p}$, the modulus of continuity in H^{p} is defined by

$$
\omega(g, t)_{p}=\sup _{0<s<t}\left\|g\left(u e^{i s}\right)-g(u)\right\|_{\mu^{p}} .
$$

Now we state our results.
Theorem 1. Suppose $0<p<1$ and Γ is $3+\delta$ smooth. Then for $f \in E^{p}(D)$,

$$
\begin{equation*}
\left\|f(z)-V_{n}(f, z)\right\|_{p} \leqslant c_{10} \omega\left(f \circ \psi, \frac{1}{n}\right)_{p} \tag{25}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
E_{n}(f)_{p} \leqslant c_{11} \omega\left(f \circ \psi, \frac{1}{n}\right)_{p} \tag{26}
\end{equation*}
$$

From Theorem 1, we can obtain the so-called "de la Vallee Poussin theorem" in $E^{p}(D)$.

Corollary 1. Under the conditions of Theorem 1,

$$
\left\|f(z)-V_{n}(f, z)\right\|_{p} \leqslant c_{12} E_{n}(f)_{p}
$$

The reason is $V_{n}\left(P_{n}, z\right)=P_{n}(z)$ for $P_{n}(z) \in \Pi_{n}$ and

$$
\left\|f(z)-V_{n}(f, z)\right\|_{p} \leqslant 2 c_{10}\|f\|_{p}
$$

It is known that (25) is sharp in the case $D=U$ [1]. However, we will give the Bernstein inequality in $E^{p}(D)$, which means that (25) is even sharp in the general cases.

Theorem 2. Under the conditions of Theorem 1,

$$
\left\|P_{n}^{\prime}\right\|_{p} \leqslant c_{13} n\left\|P_{n}\right\|_{p}
$$

holds for any $P_{n} \in \Pi_{n}$.
As in [2], Theorem 2 implies the inverse theorem of approximation in $E^{p}(D)$.

Corollary 2. Under the conditions of Theorem 1,

$$
\omega\left(f \circ \psi, \frac{1}{n}\right)_{p} \leqslant \frac{c_{13}}{n}\left\{\sum_{j=1}^{n} j^{p-1} E_{j}(f)_{p}^{p}\right\}^{1 / p}
$$

For the sake of simplicity, we shall use the notations $L_{k}(f, z), \omega_{k}(z), u_{k, j}$, and A_{k} to denote $L_{n, k}(f, z), u_{k, j}^{(n)}$, and $A_{n, k}$, respectively. Before proving the theorems, we need to prove the asymptotic behaviour of $\omega_{k}(z)$.

4. The Asymptotic Behaviour

Lemma 3. Let $n \leqslant k \leqslant(l+1) n$. Then for $z \in \mathbb{C} \backslash D_{n}$,

$$
\left|\frac{\omega_{k}(z)}{d_{n}^{k+1}\left\{\left[\Phi_{n}(z)\right]^{k+1}-(1+(1 / 2 \sqrt{n}))^{k+1}\right\}}-1\right| \leqslant c_{15} e^{-\sqrt{n / 4}},
$$

where $d_{n}=\Psi_{n}(\infty)$.
Proof. As in [7], for $u, v \in \mathbb{C} \backslash D_{n}$, we construct

$$
\chi_{n}(u, w)= \begin{cases}\frac{\Psi_{n}(u)-\Psi_{n}(v)}{d_{n}(u-v)}, & v \neq u \\ \frac{\Psi_{n}^{\prime}(u)}{d_{n}}, & v=u .\end{cases}
$$

Let $\log \chi_{n}(u, v)$ denote the branch of logarithm for which $\log \chi_{n}(u, \infty)=0$. By (10) we have

$$
\left|\log \chi_{n}(u, v)\right| \leqslant c_{16}
$$

and we have the Laurrent series

$$
\log \chi_{n}(u, v)=\sum_{m=1}^{\infty} \frac{a_{n, m}(u)}{v^{m}} .
$$

Evidently

$$
\begin{align*}
\left|a_{n, m}(u)\right| & =\left|\frac{1}{2 \pi i} \int_{|v|=1} v^{m-1} \log \chi_{n}(u, v) d v\right| \\
& \leqslant c_{16} \tag{27}
\end{align*}
$$

For $z=\Psi_{n}(u)$, we have

$$
\begin{aligned}
\log & \frac{\omega_{k}(z)}{d_{n}^{k+1}\left[u^{k+1}-(1+(1 / 2 \sqrt{n}))^{k+1}\right]} \\
& =\sum_{j=0}^{k} \log \chi_{n}\left(u, u_{k, j}\right) \\
& =\sum_{m=1}^{\infty} a_{n, m}(u) \sum_{j=0}^{k}\left(u_{k, j}\right)^{-m} \\
& =(k+1) \sum_{N=1}^{\infty} a_{n,(k+1) N}(u)\left(1-\frac{1}{2 \sqrt{n}}\right)^{-(k+1) N}
\end{aligned}
$$

and by (27) we have

$$
\begin{aligned}
& \left|\log \frac{\omega_{k}(z)}{d_{n}^{k+1}\left\{\left[\Phi_{n}(z)\right]^{k+1}-(1+(1 / 2 \sqrt{n}))^{k+1}\right\}}\right| \\
& \quad \leqslant c_{16}(k+1) \sum_{N=1}^{\infty}\left(1-\frac{1}{2 \sqrt{n}}\right)^{-n N} \\
& \quad \leqslant c_{15} e^{-\sqrt{n} 4} .
\end{aligned}
$$

This completes the proof of Lemma 3.
Set

$$
H_{k}(\zeta, z)=\frac{\omega_{k}(z)}{\omega_{k}(\zeta)}-\left[\frac{\Phi_{n}(z)}{\Phi_{n}(\zeta)}\right]^{k+1} .
$$

Lemma 4. Let $n \leqslant k \leqslant(l+1) n$. Then for $\zeta, z \in \bar{K}_{n}$

$$
\begin{align*}
&\left|\frac{\Phi_{n}(z)}{\Phi_{n}(\zeta)}\right|^{k+1} \leqslant c_{17} \tag{28}\\
&\left|H_{k}(\zeta, z)\right| \leqslant c_{17} e^{-\sqrt{n / 4}}
\end{align*}
$$

and for $z \in \Gamma, \zeta \in \bar{K}_{n}$, we also have

$$
\begin{equation*}
\left|\frac{\partial H_{k}(\zeta, z)}{\partial z}\right| \leqslant c_{17} e^{-\sqrt{n} / 5} \tag{29}
\end{equation*}
$$

Proof. For $\zeta, z \in \bar{K}_{n}$, we have

$$
r_{n} \leqslant\left|\Phi_{n}(\zeta)\right|, \quad\left|\Phi_{n}(z)\right| \leqslant \rho_{n}
$$

It follows that

$$
\left|\frac{\Phi_{n}(z)}{\Phi_{n}(\zeta)}\right|^{k+1} \leqslant\left(\frac{\rho_{n}}{r_{n}}\right)^{1 /+1) n} \leqslant c_{17}
$$

From Lemma 3

$$
\begin{aligned}
\left|\frac{\omega_{n}(z)}{d_{n}^{k+1}}-\left[\Phi_{n}(z)\right]^{k+1}\right| & \leqslant c_{18} e^{-\sqrt{n} / 4}\left|\Phi_{n}(z)\right|^{k+1}+\left(1+\frac{1}{2 \sqrt{n}}\right)^{k+1} \\
& \leqslant c_{19} e^{-\sqrt{n} / 4}\left|\Phi_{n}(z)\right|^{k+1}
\end{aligned}
$$

Then we also have

$$
\left|\frac{\omega_{n}(\zeta)}{d_{n}^{k+1}}-\left[\Phi_{n}(\zeta)\right]^{k+1}\right| \leqslant c_{19} e^{--\sqrt{n} / 4}\left|\Phi_{n}(\zeta)\right|^{k+1}
$$

For n sufficiently large, we have

$$
\left|\Phi_{n}(\zeta)\right|^{k+1} \leqslant 2\left|\frac{\omega_{n}(\zeta)}{d_{n}^{k+1}}\right| .
$$

Then

$$
\left|\frac{d_{n}^{k+1}}{\omega_{n}(\zeta)}-\left[\Phi_{n}(\zeta)\right]^{-(k+1)}\right| \leqslant 2 c_{19} e^{\sqrt{n / 4}}\left|\Phi_{n}(\zeta)\right|^{(k+1)}
$$

Hence

$$
\begin{aligned}
\left\lvert\, \frac{\omega_{k}(z)}{\omega_{k}(\zeta)}\right. & \left.-\left[\frac{\Phi_{n}(z)}{\Phi_{n}(\zeta)}\right]^{k+1} \right\rvert\, \\
\leqslant & \left|\frac{\omega_{k}(z)}{\omega_{k}(\zeta)}-\frac{d_{n}^{k+1}\left[\Phi_{n}(z)\right]^{k+1}}{\omega_{n}(\zeta)}\right| \\
& +\left|\Phi_{n}(z)\right|^{k+1}\left|\frac{d_{n}^{k+1}}{\omega_{n}(\zeta)}-\left[\Phi_{n}(\zeta)\right]^{(k+1)}\right| \\
& \leqslant c_{17} e^{-\sqrt{n} / 4}
\end{aligned}
$$

Then we have (28).
Since $H_{n}(\zeta, z)$ is analytic with respect to z in \bar{K}_{n}, we have

$$
\frac{\partial H_{k}(\zeta, z)}{\partial z}=\frac{1}{2 \pi i} \int_{\Gamma_{n} \cup ; n} \frac{H_{k}(\zeta, \tau)}{(\tau-z)^{2}} d \tau .
$$

By (19) and (28), for $z \in \Gamma$ we have

$$
\left|\frac{\partial H_{k}(\zeta, z)}{\partial z}\right| \leqslant c_{20} n^{2} e^{-\sqrt{n} / 4}
$$

This implies (29).

5. Proof of the Theorems

Proof of Theorem 1. For $z \in \Gamma$, located in the exterior of γ_{n}, we have

$$
\frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{f(\zeta)}{\zeta-z} d \zeta=0
$$

By (22)

$$
L_{k}(f, z)=-\frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{\omega_{k}(z)}{\omega_{k}(\zeta)} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

It follows that

$$
\begin{equation*}
V_{n}(f, z)=-\frac{1}{(n+1)^{1}} \sum_{k=n}^{(1+1) n} A_{k-n} \frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{\omega_{k}(z)}{\omega_{k}(\zeta)} \frac{f(\zeta)}{\zeta-z} d \zeta \tag{30}
\end{equation*}
$$

Evidently

$$
\begin{align*}
f(z)-V_{n}(f, z)= & \frac{1}{(n+1)^{\prime}} \sum_{k=n}^{(1+1) n} A_{k-n} \frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{\omega_{k}(z)}{\omega_{k}(\zeta)} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta \\
= & \frac{1}{(n+1)^{\prime}} \sum_{k=n}^{(1+1) n} A_{k-n} \frac{1}{2 \pi i} \int_{\gamma_{n}} H_{k}(\zeta, z) \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta \\
& +\frac{1}{(n+1)^{\prime}} \sum_{k=n}^{(1+1) n} A_{k \cdots n} \frac{1}{2 \pi i} \int_{\gamma_{n}}\left[\frac{\Phi_{n}(z)}{\Phi_{n}(\zeta)}\right]^{k+1} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta \\
= & I_{1}(z)+I_{2}(z) \tag{31}
\end{align*}
$$

By (28)

$$
\begin{align*}
\left|I_{1}(z)\right| & \leqslant \frac{1}{(n+1)^{\prime}} \sum_{k=n}^{(1+1) n} A_{k \cdot n} \frac{1}{2 \pi} \int_{\gamma n}\left|H_{k}(\zeta, z)\right|\left|\frac{f(\zeta)-f(z)}{\zeta-z}\right||d \zeta| \\
& \leqslant c_{17} e^{-\sqrt{n / 4}} \int_{\gamma_{n}}\left|\frac{f(\zeta)-f(z)}{\zeta-z}\right||d \zeta| \\
& \leqslant \frac{c_{20}}{(n+1)^{1}} \int_{\gamma_{n}} \frac{|f(\zeta)-f(z)|}{|\zeta-z|^{1+1}}|d \zeta|, \quad z \in \Gamma . \tag{32}
\end{align*}
$$

By (23), note $x=\Phi_{n}(z) / \Phi_{n}(\zeta)$

$$
\begin{aligned}
\left|I_{2}(z)\right| & =\frac{1}{(n+1)^{2}}\left|\frac{1}{2 \pi i} \int_{\gamma_{n}}\left(\frac{1-x^{n+1}}{1-x}\right)^{\prime} x^{n+1} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta\right| \\
& \leqslant \frac{1}{2 \pi(n+1)^{2}} \int_{\gamma_{n}} \frac{\left(1+|x|^{n+1}\right)^{l}}{|1-x|^{\prime}}|x|^{n+1}\left|\frac{f(\zeta)-f(z)}{\zeta-z}\right||d \zeta| \\
& \leqslant \frac{c_{21}}{(n+1)^{\prime}} \int_{\gamma_{n}} \frac{|f(\zeta)-f(z)|}{|\zeta-z|^{l+1}}|d \zeta|
\end{aligned}
$$

By (10) we have

$$
|\zeta-z| \leqslant c_{3}|1-x|
$$

and from Lemma 3 we have

$$
\begin{equation*}
\left|I_{2}(z)\right| \leqslant \frac{c_{22}}{(n+1)^{\prime}} \int_{\gamma_{n}} \frac{|f(\zeta)-f(z)|}{|\zeta-z|}|d \zeta| . \tag{33}
\end{equation*}
$$

Thus

$$
\begin{align*}
\left|f(z)-V_{n}(f, z)\right| & \leqslant\left|I_{1}(z)\right|+\left|I_{2}(z)\right| \\
& \leqslant \frac{c_{20}+c_{22}}{(n+1)^{\prime}} \int_{\gamma_{n}} \frac{|f(\zeta)-f(z)|}{|\zeta-z|^{1+1}}|d \zeta|, \quad z \in \Gamma . \tag{34}
\end{align*}
$$

By (20), for $z \in \Gamma$ and $\zeta \in \gamma_{n}$, we have

$$
\begin{aligned}
\left|[\phi(\zeta)]^{n}-[\phi(z)]^{n}\right| & \geqslant|\phi(z)|^{n}-|\phi(\zeta)|^{n} \\
& \geqslant 1-\left(1-\frac{c_{7}^{-1}}{n}\right)^{n} \\
& \geqslant c_{23} .
\end{aligned}
$$

Therefore by (34) we have

$$
\left|f(z)-V_{n}(f, z)\right| \leqslant \frac{c_{24}}{n+1} \int_{\gamma_{n}}\left|\frac{[\phi(\zeta)]^{n}-[\phi(z)]^{n}}{\phi(\zeta)-\phi(z)}\right|^{1+1}|f(\zeta)-f(z)||d \zeta| .
$$

Let

$$
F_{z}(\zeta)=\left\{\frac{[\phi(\zeta)]^{n}-[\phi(z)]^{n}}{\phi(\zeta)-\phi(z)}\right\}^{1+1}[f(\zeta)-f(z)]
$$

From Lemma 2

$$
\left|f(z)-V_{n}(f, z)\right| \leqslant \frac{c_{24}}{n^{i+1} \cdot 1 / p}\left\|F_{z}\right\|_{p} .
$$

Then

$$
\begin{aligned}
\| f(z) & -V_{n}(f, z) \|_{p}^{p} \\
& \leqslant \frac{c_{25}}{n^{(1+1) p} 1} \int_{\Gamma}|d z| \int_{\Gamma}\left|\frac{[\phi(\zeta)]^{n}-[\phi(z)]^{n}}{\phi(\zeta)-\phi(z)}\right|^{(1+1) p}|f(\zeta)-f(z)|^{p}|d \zeta| \\
& \leqslant \frac{c_{26}}{n^{(1+11 p-1}} \int_{-\pi}^{\pi} d \theta \int_{-\pi}^{\pi}\left|\frac{e^{i n t}-e^{i n t \theta}}{e^{i n}-e^{i \theta+1}}\right|^{(1) p}\left|f \circ \psi\left(e^{i t}\right)-f \circ \psi\left(e^{i \theta}\right)\right|^{p} d t .
\end{aligned}
$$

As in [2], this follows (32) and completes the proof Theorem 1.
Proof of Theorem 2. Since $V_{n}\left(P_{n}, z\right)=P_{n}(z)$ for $P_{n} \in \Pi_{n}$. By (30) we have

$$
\begin{aligned}
P_{n}(z)= & -\frac{1}{(n+1)^{\prime}} \sum_{k=n}^{(1+1) n} A_{k-n} \frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{\omega_{k}(z)}{\omega_{k}(\zeta)} \frac{P_{n}(\zeta)}{\zeta-z} d \zeta \\
= & -\frac{1}{(n+1)^{\prime}} \sum_{k=n}^{(1+1) n} A_{k-n} \frac{1}{2 \pi i} \int_{\gamma_{n}} H_{k}(\zeta, z) \frac{P_{n}(\zeta)}{\zeta-z} d \zeta \\
& -\frac{1}{2 \pi i(n+1)^{i}} \int_{\gamma_{n}}\left(\frac{1-x^{n+1}}{1-x}\right)^{\prime} x^{n} \frac{P_{n}(\zeta)}{\zeta-z} d \zeta,
\end{aligned}
$$

where $x=\Phi_{n}(z) / \Phi_{n}(\zeta)$,

$$
\begin{aligned}
P_{n}^{\prime}(z)= & -\frac{1}{(n+1)^{\prime}} \sum_{k=n}^{(l+1) n} A_{k-n} \frac{1}{2 \pi i} \int_{\gamma_{n}} \frac{\partial H_{k}(\zeta, z)}{\partial z} \frac{P_{n}(\zeta)}{\zeta-z} d \zeta \\
& -\frac{1}{(n+1)^{\prime}} \sum_{k=n}^{(l+1) n} A_{k-n} \frac{1}{2 \pi i} \int_{\gamma_{n}} H_{k}(\zeta, z) \frac{P_{n}(\zeta)}{(\zeta-z)^{2}} d \zeta \\
& -\frac{1}{2 \pi i(n+1)^{\prime}} \int_{\gamma_{n}} \frac{\partial}{\partial z}\left(\frac{1-x^{n+1}}{1-x}\right)^{\prime} x^{n} \frac{P_{n}(\zeta)}{\zeta-z} d \zeta \\
& -\frac{1}{2 \pi i(n+1)^{2}} \int_{\gamma_{n}}\left(\frac{1-x^{n+1}}{1-x}\right)^{\prime} x^{n} \frac{P_{n}(\zeta)}{(\zeta-z)^{2}} d \zeta \\
= & J_{1}(z)+J_{2}(z)+J_{3}(z)+J_{4}(z) .
\end{aligned}
$$

For $z \in \Gamma$, from Lemma 4 we have

$$
\left|J_{1}(z)\right|+\left|J_{2}(z)\right| \leqslant \frac{c_{25}}{(n+1)^{\prime}} \int_{i n} \frac{\left|P_{n}(\zeta)\right|}{|\zeta-z|^{\prime+1}}|d \zeta| .
$$

Similar to estimating $\left|I_{2}(z)\right|$ in the proof of Theorem 1

$$
\begin{aligned}
\left|J_{4}(z)\right| & \leqslant \frac{c_{26}}{(n+1)^{1}} \int_{\gamma_{n}} \frac{\left|P_{n}(\zeta)\right|}{|\zeta-z|^{1+2}}|d \zeta| \\
& \leqslant \frac{c^{27}}{(n+1)^{1-1}} \int_{\gamma_{n}} \frac{\left|P_{n}(\zeta)\right|}{|\zeta-z|^{1+1}}|d \zeta| .
\end{aligned}
$$

Evidently

$$
\begin{aligned}
\left|J_{3}(z)\right|= & \frac{1}{2 \pi(n+1)^{\prime}} \left\lvert\, \int_{i n}\left[-n-1+(n+1)(l+1) x^{n+1}-\frac{l\left(1-x^{n+1}\right) x}{1-x}\right]\right. \\
& \left.\times \frac{\left(1-x^{n+1}\right)^{\prime}}{(1-x)^{\prime}} x^{n} \frac{\Phi_{n}^{\prime}(z)}{\Phi_{n}(\zeta)} \frac{P_{n}(\zeta)}{\zeta-z} d \zeta \right\rvert\, \\
\leqslant & \frac{c_{28}}{(n+1)^{\prime}} \int_{\gamma_{n}}\left[(n+1)+\frac{1}{|\zeta-z|}\right] \frac{\left|P_{n}(\zeta)\right|}{|\zeta-z|^{\prime+1}}|d \zeta| \\
\leqslant & \frac{c_{29}}{(n+1)^{\prime-1}} \int_{i n} \frac{\left|P_{n}(\zeta)\right|}{|\zeta-z|^{\prime+1}}|d \zeta| .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left|P_{n}^{\prime}(z)\right| & \leqslant \frac{1}{(n+1)^{2}} \sum_{j=1}^{4}\left|J_{j}(z)\right| \\
& \leqslant \frac{c_{30}}{(n+1)^{r-1}} \int_{\gamma, n} \frac{\left|P_{n}(\zeta)\right|}{|\zeta-z|^{\mid+1}}|d \zeta|, \quad z \in \Gamma .
\end{aligned}
$$

Comparing with (34) in the proof of Theorem 1, we can obtain (26) with a similar procedure.

Acknowledgment

The author is grateful to professor X. C. Shen for his encouragement and advice

References

1. E. A. Storożenko, Approximation of functions of classes $H^{p}(0<p<1)$, Mat. Sb. 105 (1978), 601-621. [Russian]
2. E. A. Storoženko, On the theorem of Jackson type in $H^{\prime}(0<p<1)$, lzv. Akad. Nauk SSSR. Ser. Mat. 44 (1980), 946-962. [Russian]
3. T. Kövari and Ch. Pommerenke, On Faber polynomial and Faber expansion, Math. Z. 99 (1967), 193-206.
4. J. E. Anderson, On the degree of polynomial approximation in H^{p}. J. Approx. Theory 19 (1977), 61-68.
5. S. E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), 310-340.
6. S. E. Warschawski, On the distortion of conformal mapping of variable domains, Trans. Amer. Math. Soc. 82 (1956), 300-332.
7. J. H. Curtiss, Convergence of complex Language interpolation polynomials on the locus of interpolation points, Duke Math. J. 32 (1965), 187-204.
8. P. L. Duren, "Theory of H^{p} Spaces," Academic Press, New York/London, 1970.
9. J. B. Garnett, "Bounded Analytic Functions," Academic Press, New York/London, 1981.

[^0]: * Supported by the National Science Foundation of China.

